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End-Semester Exam : Topics in Gaussian Processes

Instructor : Yogeshwaran D.

Date : May 6th, 2019.

Max. points : 100. Time Limit : 4 hours.

Answer as many questions as you can.
Give necessary justifications and explanations for all your argu-
ments. If you are citing results from the notes or class, mention
it clearly.

1. For smooth functions f , define the generator L of a Markov semi-group
as

Lf :=
n∑

i,j=1

gi,j∂2i,jf +
n∑
i=1

bi∂if,

where g(x) = (gi,j(x))1≤i,j≤n and b(x) = (bi(x))1≤i≤n are smooth,
respectively n × n symmetric matrix-valued and Rn-valued functions
ox x. Let µ be the stationary measure and Pt be the corresponding
Markov semi-group. (20)

(a) Compute the carré du champ operator Γ(f, g) and show that it
satisfies the chain rule Γ(f, φ ◦ g) = Γ(f, g)φ′ ◦ g.

(b) Show that

E(logPtf, Ptf) ≤
√
µ(Γ(f, f)/f)µ(fΓ(Pt logPtf, Pt logPtf)).

(c) Show that if the Bakry-Émery criterion with constant c holds for
all f , then

E(logPtf, Ptf) ≤ e−t/c
√
E(log f, f)µ(fPtΓ(logPtf, logPtf)).

(d) Show that if the Bakry-Émery criterion with constant c holds for
all f , then the following log-Sobolev inequality holds

Ent[f2] ≤ 2cE(f, f).

2. Let (S, d) be a metric space with a measure µ. Prove the following.
(30)

(a) Show that the isoperimetric inequality for (S, d, µ) with constants
C, σ2 is equivalent to the concentration inequality for Lipschitz
functions w.r.t. the median and with constants C, σ2.

(b) Show that if isoperimetric inequality for (S, d, µ) with constants
C, σ2 holds, then the concentration inequality for Lipschitz func-
tions w.r.t. the mean holds with constants eC

2π/4, 4σ2.
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(c) Suppose concentration inequality for Lipschitz functions w.r.t.
the mean holds with constants C, σ2. Then show that concen-
tration inequality for Lipschitz functions w.r.t. the median holds
with constants 2C, 4σ2

3. State which implications among the below items hold. If specific ad-
ditional conditions are necessary for the implication, please mention
the same. (10).

(a) Bakry-Émery criterion.

(b) Local Poincaré inequality.

(c) Poincaré inequality.

(d) Local modified Log-Sobolev inequality.

(e) Modified Log-Sobolev inequality.

(f) Log-Sobolev inequality.

(g) Exponential L2 ergodicity.

(h) Exponential entropic ergodicity.

(i) Sub-Gaussianity for Lipschitz functions with suitable variance
proxy.

(j) Hypercontractivity.

(k) T1 inequality.

(l) T2 inequality.

(m) L1 − L2 inequality.

4. Gaussian polymer on a complete graph : Let X = (Xv)v∈{1,...,n}2 be
i.i.d. N(0, 1). Let γ be a path of length n of the form (1, a1), (2, a2), . . . , (n, an)
where ai ∈ {1, . . . , n}. Define Hn(γ) := −

∑
v∈γ gv and F (X) :=

minγ Hn(γ). Compute VAR(F (X)) and compare it with the variance
bound from the Poincare’ inequality. (10)

5. Optimal Poincaré inequality : Let L be a a generator of a reversible
Markov semigroup with stationary distribution µ. (20)

(a) Show that −L has eigenvalues 0 = λ0 ≤ λ1 ≤ ..... Here eigenvalue
is referred to as eigenvalues of −L as an operator on L2(µ).

(b) Denoting the corresponding orthonormal basis of eigenfunctions
as u0, . . . , un, . . . show that u0 ≡ 1 i.e., the constant function.

(c) Using the orthonormal series expansion of f , compute E[f ], E(f, f)
in terms of λk, ak := µ(ukf), k = 0, . . ..

(d) Show that if λ1 > 0 then VAR(f) ≤ λ−11 E(f, f) for all f and also
that there exists a non-constant f such that the equality holds.
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(e) If λ1 = 0 show that there exists f such that 0 = E(f, f) <
VAR(f).

(f) Conclude that the Poincaré inequality holds iff λ1 > 0 and in
that case the optimal constant is λ−11 .

6. Birth-death chain : Let N,N ′ denote independent Poi(λ) random vari-
ables. Given any n ∈ N, t > 0, define e−t ◦ n =

∑n
i=1Xi,n(t) where

Xi,n(t) are i.i.d. Ber(e−t). In other words, e−t ◦ n d
= Bin(n, e−t). De-

fine a Markov process on N as follows : Gt := e−t ◦G0 + (1− e−t) ◦N ′
where all the involved Bernoulli random variables are independent.
(20)

(a) Show that Gt is a reversible with stationary distribution N .

(b) Show that Lf(k) := λ∆f(k+1)−k∆f(k) where ∆f(k) = f(k)−
f(k − 1).

(c) Show that ∆Ptf = e−tPt∆f

(d) Show that E(F (N))− F (k) =
∫∞
0 LPsF (k)ds.

(e) Show that E(f, f) = E(∆f(N)2).

7. Glauber dynamics for Markov chains on hypercube : Let Ω = {0, 1}n
and π be a distribution on Ω. For a configuration ξ ∈ Ω, let ξi denote
the configuration with the ith co-ordinate flipped. Recall that the
generator L is defined via the matrix Λ′ as Lf(ξ) =

∑
η Λ(ξ, η)f(η).

(10)

(a) Assume that L is the generator of a reversible Markov chain on
Ω. Show that E(f, f) = 1

2

∑
ξ,η π(ξ)π(η)Λ(ξ, η)(f(ξ)− f(η))2.

(b) Define Λ as follows : For η 6= ξ, Λ(ξ, η) = π(ξ)+π(η)
π(ξ) if η = ξi for

some 1 ≤ i ≤ n and else Λ(ξ, η) = 0. Show that

E(f, f) = Eπ[
n∑
i=1

[f(ξi)− f(ξ)]2].

8. Discrete Second-order Poincaré inequality : Let X = (X1, . . . , Xn)
be a random vector of independent random variables. Let X ′ =
(X ′1, . . . , X

′
n) be an independent copy of X. We define XA as fol-

lows : XA
i := X ′i1[i ∈ A] + Xi1[i /∈ A]. Set Xj := X{j} and

∆jf(X) = f(X) − f(Xj). Assume φ is a smooth function with
bounded derivatives below. (30)

(a) Show that f(X)− f(X ′) =
∑

A([n]
1

( n
|A|)(n−|A|)

∑
j /∈A ∆jf(XA).
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(b) For A ( [n], j /∈ A, set UA,j := U(X1, . . . , Xn, X
′
1, . . . , X

′
n) :=

g(X)∆jf(XA). Define U ′A,j := U(X1, . . . , X
′
j , . . . , Xn, X

′
1, . . . , Xj , . . . , X

′
n).

Show

E[UA,j ] =
1

2
E[UA,j + U ′A,j ] =

1

2
E[∆jg(X)∆jf(XA)].

(c) Show that Cov (f(X), g(X)) =
∑

A([n]
1

( n
|A|)(n−|A|)

∑
j /∈A E[UA,j ].

(d) For A ( [n], j /∈ A, set RA,j := ∆j(φ ◦ f)(X)∆jf(XA) and
R̃A,j := φ′(f(X))∆jf(X)∆jf(XA). Show that

|RA,j − R̃A,j | ≤
‖φ′‖∞

2
(∆jf(X))2∆jf(XA).

(e) Define T := 1
2

∑
A([n]

1

( n
|A|)(n−|A|)

∑
j /∈A ∆jf(X)∆jf(XA). SetW =

f(X) and assume that E[W ] = 0,E[W 2] = 1. Show that

|E[φ(W )W ]− E[φ′(W )T ]| ≤ ‖φ
′‖∞
4

n∑
j=1

E[|∆jf(X)|3].

(f) Assume that ‖φ′‖∞ ≤ 1 and ‖φ′′‖∞ ≤ 2. Show that

|E[φ′(W )]− E[φ(W )W ]| ≤
√
VAR(E[T |W ]) +

1

2

n∑
j=1

E[|∆jW |3].
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